Evidence for a diffusion-controlled mechanism for fluorescence blinking of colloidal quantum dots.

نویسندگان

  • Matthew Pelton
  • Glenna Smith
  • Norbert F Scherer
  • Rudolph A Marcus
چکیده

Fluorescence blinking in nanocrystal quantum dots is known to exhibit power-law dynamics, and several different mechanisms have been proposed to explain this behavior. We have extended the measurement of quantum-dot blinking by characterizing fluctuations in the fluorescence of single dots over time scales from microseconds to seconds. The power spectral density of these fluctuations indicates a change in the power-law statistics that occurs at a time scale of several milliseconds, providing an important constraint on possible mechanisms for the blinking. In particular, the observations are consistent with the predictions of models wherein blinking is controlled by diffusion of the energies of electron or hole trap states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of quantum dot power-law blinking.

Photon emission from quantum dots (QDs) and other quantum emitters is characterized by abrupt jumps between an "on" and an "off" state. In contrast to ions and atoms however, the durations of bright and dark periods in colloidal QDs curiously defy a characteristic time scale and are best described by a power-law probability distribution, i.e., ρ(τ) ∝ τ(-α). We controllably couple a single collo...

متن کامل

Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation

For colloidal quantum dots, the ongoing biggest problem is their fluorescence blinking. Until now, there is no generally accepted model for this fluorescence blinking. Here, two-photon excited fluorescence from CdSe/ZnS nanocrystals on silicon nitride photonic crystals is studied using a femtosecond laser. From analysis of the spectra and decay processes, most of the relative trion efficiency i...

متن کامل

Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots.

The light-induced spectral diffusion and fluorescence intermittency (blinking) of semiconductor nanocrystal quantum dots are investigated theoretically using a diffusion-controlled electron-transfer (DCET) model, where a light-induced one-dimensional diffusion process in energy space is considered. Unlike the conventional electron-transfer reactions with simple exponential kinetics, the model n...

متن کامل

Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles.

A mechanism involving diffusion-controlled electron transfer processes in Debye and non-Debye dielectric media is proposed to elucidate the power-law distribution for the lifetime of a blinking quantum dot. This model leads to two complementary regimes of power law with a sum of the exponents equal to 2, and to a specific value for the exponent in terms of a distribution of the diffusion correl...

متن کامل

Controlling blinking in multilayered quantum dots

The fluorescence intermittency of multilayered quantum dots QDs is experimentally investigated. The measured blinking statistical probabilities for QDs of different shell structures and at different excitation powers are compared with the diffusion controlled electron transfer model. The results show that the power law statistics for the “on” and “off” events depend strongly on the structure an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 36  شماره 

صفحات  -

تاریخ انتشار 2007